news-details

Shape-morphing brain sensor adheres to curved surfaces for ultrasound neurostimulation

Transcranial focused ultrasound, a non-invasive technique to stimulate specific areas of the brain using high-frequency sound waves, could be a promising treatment strategy for many neurological disorders. Most notably, it could help to treat drug-resistant epilepsy and other conditions associated with recurrent tremors.

Researchers at Sungkyunkwan University (SKKU), the Institute for Basic Science (IBS) and the Korea Institute of Science and Technology recently developed a new sensor that could be used to perform transcranial focused ultrasound on patients. This sensor, introduced in a paper published in Nature Electronics, adapts its shape and can closely adhere to cortical surfaces, allowing users to record neural signals and stimulate specific brain regions via low intensity ultrasound waves.

"Previous research on brain sensors that contact the brain surface struggled with accurately measuring brain signals due to the inability to conform tightly to the brain's complex folds," Donghee Son, supervising author for the study, told Tech Xplore.

"This limitation made it difficult to precisely analyze the entire brain surface and accurately diagnose brain lesions. While a brain sensor previously developed by Professor John A. Rogers and Professor Dae-Hyeong Kim addressed this issue to some extent due to its extremely thin form, it still faced challenges in achieving tight adhesion in regions with severe curvature."

The sensor previously developed by Professors Rogers and Kim was found to collect more precise measurements on the brain's surface. Despite its promise, this sensor presented various limitations, such as failing to adhere to surfaces of the brain that had a larger curvature, as well as the proneness to slipping from its original attachment point due to micro-motions in the brain and the flow of cerebral spinal fluid (CSF).

Related Posts
Advertisements
Market Overview
Top US Stocks
Cryptocurrency Market