news-details

Scientists reveal new electrochemical cell design for turning carbon dioxide into a green fuel

Researchers from Tokyo Metropolitan University have made strides forward in realizing industrial conversion of bicarbonate solution made from captured carbon to a formate solution, a green fuel. The research is published in the journal EES Catalysis.

Their new electrochemical cell, with a porous membrane layer in between the electrodes, overcomes major issues suffered in reactive carbon capture (RCC) and achieves performances rivaling energy-hungry gas-fed methods. Processes like theirs directly add value to waste streams and are key to realizing net zero emissions.

Carbon capture technology is a big part of the global strategy to reduce emissions and fight climate change. But the important question of what we do with the captured carbon dioxide remains an open challenge. Do we simply push it underground, or is there more to it? Scientists certainly think so. Using state-of-the-art catalysts and chemical processes, work is under way to try and convert the captured product into something more useful for society.

One particularly enticing application is the conversion of carbon dioxide into an environmentally-friendly fuel. Technology has been developed for using electrochemical cells to reduce the carbon dioxide to a formate compound, which itself can be used in formate fuel cells to generate power.

However, a significant roadblock is the need for pure carbon dioxide: pressurizing carbon dioxide can be highly energy intensive. The gas is not converted very efficiently, and the cells do not last very long. Enter reactive carbon capture, where carbon dioxide dissolved in alkaline solutions, like bicarbonate solutions, can be directly used to create formate ions without the losses associated with providing pure gas.

Related Posts
Advertisements
Market Overview
Top US Stocks
Cryptocurrency Market