news-details

Scientists discover an unexpected involvement of sodium transport in mitochondrial energy generation

The GENOXPHOS (Functional Genetics of the Oxidative Phosphorylation System) group at the Centro Nacional de Investigaciones Cardiovasculares (CNIC) has discovered a crucial role of sodium in the generation of cellular energy.

The study, led by Dr. José Antonio Enríquez, also involved the participation of scientists from the Complutense University of Madrid, the Biomedical Research Institute at Hospital Doce de Octubre, the David Geffen School of Medicine at UCLA, and the Spanish research networks on frailty and healthy aging (CIBERFES) and cardiovascular disease (CIBERCV).

The study, published in Biochimica et Biophysica Acta (BBA) - Bioenergetics, reveals that respiratory complex I, the first enzyme of the mitochondrial electron transport chain, possesses a hitherto unknown sodium transport activity that is crucial for efficient cellular energy production.

The discovery of this activity provides a molecular explanation for the origin of the neurodegenerative disease Leber's hereditary optic neuropathy (LHON).

First described in 1988, LHON is linked to defects in mitochondrial DNA and is the most frequent mitochondrially inherited disease in the world. The new study shows that the hereditary optic neuropathy in LHON is caused by a specific defect in the transport of sodium and protons by complex I.

Related Posts
Advertisements
Market Overview
Top US Stocks
Cryptocurrency Market