news-details

Reducing energy loss in metal nanostructures by altering geometrical dimensions

Researchers at City University of Hong Kong (CityUHK) have made a discovery that significantly reduces energy loss in metal nanostructures. By altering the geometrical dimensions of these structures, researchers have unlocked their full potential, paving the way for the development of more powerful and efficient nanoscale optical devices.

The research team is co-led by Professor Tsai Din-ping, Chair Professor in the Department of Electrical Engineering at CityUHK, and Professor Yuri Kivshar, from Australian National University. Professor Kivshar also served as a visiting research fellow at the Hong Kong Institute for Advanced Study at CityUHK in 2023.

A new universal rule, the inverse square root law, has been discovered, showing how adjusting the dimensions of plasmonic nanostructures can significantly reduce energy loss. This discovery bridges the gap between localized surface plasmon resonances (LSPRs) and surface plasmon polaritons (SPPs), resulting in a two-order-of-magnitude improvement in resonance quality in metal arrays. This breakthrough opens exciting possibilities for stronger light-matter interactions at the nanoscale.

Height reduction in metal arrays shifts resonance from LSPRs to SPPs. Credit: Physical Review Letters (2024). DOI: 10.1103/PhysRevLett.133.053801

Related Posts
Advertisements
Market Overview
Top US Stocks
Cryptocurrency Market