news-details

Optogenetic control reveals collective cell behavior

New research led by the Institute for Bioengineering of Catalonia (IBEC) has studied the migratory movement of groups of cells using light control. The results show that there is no leader cell that directs the collective movement, as previously thought, but that all cells participate in the process.

These findings are relevant to the design of treatments to stop tumor invasion or accelerate wound healing, physiological processes closely linked to cell migration. The study is published in the journal Nature Physics.

In processes such as embryonic development, wound healing or cancer invasion, cells are known to move in groups in a coordinated way. Leading these groups of cells are so-called leader cells, which are highly mobile and seem to direct the migration of the whole group, just as groups of animals often organize themselves according to the instructions of a leader.

The study led by the Institute for Bioengineering of Catalonia (IBEC) has attempted to generate leader cells in the laboratory using optogenetic control, in order to test whether there really are cells that direct this collective movement and cells that follow them, and how information is transmitted from one to the other in order to move in a coordinated way.

The research team used genetically modified cells that were able to follow the movement of blue light. Where the cell is illuminated by the light beam, the protein Rac1 is activated, causing a protrusion known as a lamellipodium, which facilitates cell movement.

Related Posts
Advertisements
Market Overview
Top US Stocks
Cryptocurrency Market