news-details

Making micelles more effective for dye and drug dispersion through well-defined core-shell structures

Micelles are spherical molecular structures usually formed by amphiphilic molecules with block structure, which contain both hydrophilic and hydrophobic parts. The hydrophobic tails of these molecules cluster together to form a core, while the hydrophilic heads face outward, creating a protective shell. This structure allows micelles to encapsulate hydrophobic substances within their core and disperse them in a water-based environment.

An example of micelles in action is in soap, which traps dirt and oil, making them easy to rinse off with water. Micelles can be created using block copolymers, which have distinct hydrophilic and hydrophobic segments, or random copolymers with a mixed distribution of hydrophilic and hydrophobic segments. The former, used in the pharmaceutical industry, offers precise control over the micelle's properties but is more complex and expensive to produce, while the latter, used in the dye industry, is simpler and cheaper to produce.

Researchers led by Mr. Masahiko Asada and Professor Hidenori Otsuka from Tokyo University of Science (TUS) and DIC Corporation are investigating how to make micelles more effective at dissolving dyes. In a study featured on the cover of the journal Soft Matter, they compared the performance of block copolymers and random copolymers to determine the most optimal micelle for dye dispersion.

"There is a trade-off between utilizing random copolymers as dispersants for ink production and their inadequate dispersion performance. We investigated block copolymer micelles and compared their dispersion performance with those of random copolymers to determine the micelle structure required for adequate dye solubilization," says Prof. Otsuka, the lead author of the study.

The researchers synthesized various block copolymers (BL01 to BL05) using different ratios of styrene (St), n-butylmethacrylate (BMA), and methacrylic acid (MA) as monomers. They compared the performance of these block copolymers with random copolymers (RD01, RD02, RD03, and RD04), which were made from styrene and either methacrylic acid or acrylic acid. The copolymers and random copolymers were dispersed in water at a 0.5% concentration, and the micelle structures were examined using small angle X-ray scattering (SAXS) analysis.

Related Posts
Advertisements
Market Overview
Top US Stocks
Cryptocurrency Market