news-details

Light momentum turns pure silicon from an indirect to a direct bandgap semiconductor

UC Irvine-led research reveals that the optical properties of materials can be dramatically enhanced—not by changing the materials themselves, but by giving the light new properties.

The researchers demonstrated that by manipulating the momentum of incoming photons, they could fundamentally change how light interacts with matter. One striking example from their findings is that the optical properties of pure silicon, a widely used and essential semiconductor, can be enhanced by an astonishing four orders of magnitude.

This breakthrough holds great promise to transform solar energy conversion and optoelectronics at large. The study, featured as the cover story of the September issue of ACS Nano, was conducted in collaboration with Kazan Federal University and Tel Aviv University.

"In this study, we challenge the traditional belief that light-matter interactions are solely determined by the material," said Dmitry Fishman, senior author and adjunct professor of chemistry. "By giving light new properties, we can fundamentally reshape how it interacts with matter.

"As a result, existing or optically 'underappreciated' materials can achieve capabilities we never thought possible. It's like waving a magic wand—rather than designing new materials, we enhance the properties of existing ones simply by modifying the incoming light."

Related Posts
Advertisements
Market Overview
Top US Stocks
Cryptocurrency Market