news-details

Enhancing hurricane forecasts: Simulations reveal reducing estimates of atmospheric friction improves storm predictions

Hurricanes and other extreme weather events are expensive in lives and money. From 1980 to 2023, weather and climate disasters caused about $2.6 trillion in damages in the U.S., according to NOAA estimates. In 2022 alone, the U.S. experienced 18 disasters individually costing $1 billion or more. Worse, U.S. hurricanes from 2000 to 2021 took almost 2,000 lives. As climate change continues to intensify these storms, accurate forecasting becomes ever more crucial.

"Enhanced hurricane predictions can potentially save millions of dollars and many lives by providing more precise forecasts of hurricane winds and floods. [A better understanding of these storms] holds promise for better evacuation planning but also has the potential to inform emergency services with the forecasts needed to respond more effectively," says Mostafa Momen, University of Houston.

University of Houston graduate student Md Murad Hossain Khondaker, working with his advisor Assistant Professor of Civil and Environmental Engineering Mostafa Momen, wanted to understand better how atmospheric friction affects storm strength and numerical predictions.

To study this problem, the team got access to Pittsburgh Supercomputing Center's (PSC) supercomputer, Bridges-2. They got time on the system through an allocation from ACCESS, the NSF's network of supercomputing resources, in which PSC is a leading member.

At the core of the team's research is a novel approach to understanding how hurricanes function. While the power of the sun in low latitudes can pump energy into storms, making them more intense, the atmosphere itself resists through friction. But the extent of this friction, and its effect on storm power, is poorly understood. Khondaker wondered what changing the assumed friction, or diffusion, would do to the predictions.

Related Posts
Advertisements
Market Overview
Top US Stocks
Cryptocurrency Market