news-details

Claustrophobic cells slow their own growth, forming beautiful patterns of concentric circles

Like so many organisms on the planet, when cells experience mosh-pit-level crowding, they may just become stressed. Yet unlike most other life forms, cells subject to physical stress from crowding by neighbors can find some relief by dramatically slowing their own growth—and in doing so form an eye-catching pattern of concentric circles as a spectacular consequence.

This process, discovered through simulations and modeling of dividing bacterial colonies, is described in a new study published in Physical Review Letters. The findings could suggest new ways to slow the growth of harmful microorganisms in infections or manufacturing, says study lead author Scott Weady, a research fellow at the Flatiron Institute's Center for Computational Biology in New York City.

"I was definitely surprised to see that cells under this kind of mechanical stress can mitigate growth in that way," Weady says. "It's interesting that they form these concentric circles where each ring shows how much they've been stifled by their neighbors, ultimately impacting how large they can grow. It's a robust pattern that comes from a very simple rule, and it's just something that no one had really thought to measure before."

Weady co-authored the study with fellow Flatiron Institute researchers Bryce Palmer, Adam Lamson, Reza Farhadifar and Michael Shelley, as well as Taeyoon Kim of Purdue University.

A deep dive into dividing cells

Related Posts
Advertisements
Market Overview
Top US Stocks
Cryptocurrency Market