news-details

Atmospheric methane increase during pandemic due primarily to wetland flooding, satellite data analysis finds

A new analysis of satellite data finds that the record surge in atmospheric methane emissions from 2020 to 2022 was driven by increased inundation and water storage in wetlands, combined with a slight decrease in atmospheric hydroxide (OH). The results have implications for efforts to decrease atmospheric methane and mitigate its impact on climate change.

The research is published in the journal Proceedings of the National Academy of Sciences.

"From 2010 to 2019, we saw regular increases—with slight accelerations—in atmospheric methane concentrations, but the increases that occurred from 2020 to 2022 and overlapped with the COVID-19 shutdown were significantly higher," says Zhen Qu, assistant professor of marine, Earth and atmospheric sciences at North Carolina State University and lead author of the research. "Global methane emissions increased from about 499 teragrams (Tg) to 550 Tg during the period from 2010 to 2019, followed by a surge to 570—590 Tg between 2020 and 2022."

Atmospheric methane emissions are given by their mass in teragrams. One teragram equals about 1.1 million U.S. tons.

One of the leading theories concerning the sudden atmospheric methane surge was the decrease in manmade air pollution from automobiles and industry during the pandemic shutdown of 2020 and 2021. Air pollution contributes hydroxyl radicals (OH) to the lower atmosphere. In turn, atmospheric OH interacts with other gases, such as methane, to break them down.

Related Posts
Advertisements
Market Overview
Top US Stocks
Cryptocurrency Market