news-details

A quick and easy way to produce anode materials for sodium-ion batteries using microwaves

A research team has developed a process technology that enables ultrafast, 30-second preparation of hard carbon anodes for sodium-ion batteries using microwave induction heating.

One of the next-generation secondary batteries, the sodium-ion battery uses sodium (Na) in lieu of the current mainstay, lithium (Li). Sodium, the main component of salt, is more than a thousand times more abundant than lithium and is easier to extract and refine. Furthermore, its lower reactivity compared to lithium means greater electrochemical stability when used for batteries, making it more favorable for fast charging and discharging, while maintaining performance even at low temperatures.

Despite these advantages, sodium-ion batteries face significant challenges, including lower energy density and shorter lifespan compared to lithium-ion batteries due to the complexity of the manufacturing process. The larger size of sodium ions compared to lithium necessitates the use of hard carbon, which has a larger interlayer spacing than graphite, the current mainstay of anode materials.

Hard carbon is not found in nature and therefore must be synthesized. The preparation process is highly intricate, requiring hydrocarbon materials—main components of plants and polymers—to be heated in an oxygen-free environment at temperatures exceeding 1,000°C for extended periods. This "carbonization" process is both economically and environmentally burdensome, which has been a key obstacle to the commercialization of sodium-ion batteries.

KERI's microwave induction heating equipment for rapid production of hard carbon, an anode material for sodium ion batteries. Credit: Korea Electrotechnology Research Institute

Related Posts
Advertisements
Market Overview
Top US Stocks
Cryptocurrency Market